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Abstract

Two asymptotic results in modulation classification are presented. First, a consideration of the noise-
less case motivates a lower bound on misclassification probability. Contrary to central limit theorem
approximations, the error probability does not go to zero as the signal-to-noise ratio goes to infinity for a
fixed number of samples, but is bounded from below by a nonzero error floor if the constellations under
different hypotheses have signal points in common. Second, Chernoff information, Bhattacharyya distance
and Kullback-Liebler distances are calculated for phase-shift keying modulation classification problems.
Simulation results show the utility of Chernoff and Bhattacharyya bounds for phase-shift keying mod-
ulation classification. It is shown that the Chernoff information is a valuable performance measure for

modulation classification, both asymptotically and for a finite number of observations.

Index Terms

Chernoff bound, modulation classification.

I. INTRODUCTION

Modulation classification is the problem of identifying the modulation scheme employed by the
transmitter of a communications signal. Although originally a problem in noncooperative commu-
nications theory, modulation classification is increasingly being applied in cooperative scenarios.
One such application is in communication systems employing adaptive modulation techniques
where blind modulation classification alleviates the need for overhead symbols carrying informa-
tion about modulation format, thereby increasing the information throughput.

Previous work has focussed on investigating the performance of particular classifiers, by simu-
lation and/or analysis[1]-[6]. This includes investigation of feature-based methods[3]-[6] as well
as likelihood methods for modulation classification[1],[2] which are motivated by optimal decision
theory rather than an ad-hoc or heuristic approach. For phase-shift keying modulation classifica-
tion, feature-based detectors typically extract only phase information and then construct algorithms
motivated by differences in moments[3], phase histograms (analyzed in [1],[2]), or the discrete

Fourier transform of phase histograms[4] under each of the possible hypotheses. In [5] and [6],
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the received phase is processed through a likelihood test approximation using a Fourier expansion
of the phase probability density functions. Likelihood methods are analyzed in [1] and [2], which
develop so-called quasi-log-likelihood (qLLR) classifiers, based on an approximation to the log-
likelihood ratio. Analytical probability of error expressions for the qLLR classifiers are obtained
under a central limit theorem argument, and their validity for small values of signal-to-noise ra-
tio(SNR) and small-to-moderate numbers of samples is confirmed using simulation results. Some
work has been done on performance bounds for modulation classification. Reference [7] showed
that, for a finite number of distinct constellations, the error rate of a maximum likelihood modula-
tion classifier goes to zero as the number of samples approaches infinity.

Distance measures for probability distributions have been proposed which are easier to cal-
culate than the analytical probability of error expression, but capture an essential feature of the
performance of statistical tests or communications systems[8]—[13]. These measures include Bhat-
tacharyya distance(BD)[8],[9], Kullback-Liebler distance(KLD)[14], Chernoff information(CI)[11],
and more general information divergences[12],[13],[15]. Although they do not define true distance
metrics on the space of probability distributions or densities, these quantities exhibit important
properties about the probability of error that the usual distance metrics (e.g. the L2 norm) do
not. Specifically, these coefficients relate to the probability of error asymptotically as “error ex-
ponents,” and through bounds when the number of samples is finite. Results from large deviation
theory[10],[14],[15] can be used to show that these quantities govern or bound the achievable log-
arithmic rate of decay to zero of probability of misclassification, in the limit as the number of
samples goes to infinity. The CI is the optimal asymptotic error exponent for the Bayes error prob-
ability if the a priori probabilities are strictly positive[16]. Furthermore, in an M-ary hypothesis
test, the minimum CI among all distinct pairs of the hypotheses determines the asymptotic error
exponent of the test[16]. The BD has been proposed as a design criterion for communication sys-
tems[8],[9]. It provides both upper and lower bounds to the Bayes probability of error for a finite

number of observations[8],[17], and upper and lower bounds on the CI. Bounds for the M-ary hy-
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pothesis testing problem have also been formulated which involve pairwise BDs[18]-[20], which
further motivates its use as a performance measure. If a Neyman-Pearson criterion is used, the
KLDs between the distributions are the relevant error exponents. Stein’s lemma[14] shows that,
in the limit as the number of samples goes to infinity, the best achievable logarithmic rate to zero
of the type II error probability is given by a KLD, in the limit as the fixed type I error probability
constraint goes to zero.

In this paper, we show that for a fixed number of samples, the probability of misclassification
of an optimal classifier does not necessarily go to zero as the signal-to-noise ratio (SNR) goes to
infinity. Instead, it is bounded from below by a nonzero error floor, if the constellations overlap
under different hypotheses. Further, we calculate the CI, BD and KLDs for the classification of
BPSK vs. QPSK, BPSK vs. 8PSK and QPSK vs. 8PSK. Simulation results are used to show the
performances of the classifiers, and the practical implications of these distances.

This paper is organized as follows. In Section II, we establish the model for the binary modula-
tion classification problem considering two-dimensional constellations in additive white Gaussian
noise (AWGN). In Section III, we consider the problem in a noiseless environment, which moti-
vates the derivation of a bound for the noisy case. It is shown that the error probability for this
problem can exhibit a lower bound for a fixed number of samples. In Section IV, we calculate the
CI, BD and KLDs for three phase-shift keying modulation classification problems. In Section V,
we simulate classifiers for these problems using a Bayes minimum probability of error criterion,
and a Neyman-Pearson criterion, to show their performances and the practical implications of the

error exponent bounds.

II. SYSTEM MODEL

Consider the binary modulation classification problem for two-dimensional modulation schemes

transmitted in AWGN][21]. The received signal is given by

r(t) = s(t) +n(t), te[-mT, (n +m — 1)T], (1)



where 7 is the symbol rate, 2T is the pulse duration' and n(t) is AWGN with two-sided power

No

spectral density <* W/Hz. Assuming perfect symbol synchronization, the signal component is

given by
s(t) = Re{\/gz spp(t— (k— 1)T)6j(wct+ec)} 7 ()
k=1

where p(t) is a unit-energy pulse that is zero outside of [—mT, mT]" for an integer m > 1, w,. and
0. are the carrier frequency and phase, respectively, and {s; } is an iid sequence of complex values
drawn according to a uniform distribution on one of two sets A or B. We assume that p(¢) is such
that the Nyquist pulse-shaping criterion is met[22], so that there is no intersymbol interference at
the output of the matched filter in the receiver. Under hypothesis H, which occurs with a priori
probability 7, the constellation is the set of complex points A = {a1, as, . .. an, }, which satisfies
MLO Zf\i % lail* = Es, where |a;| is the complex norm of a;, and E; is the average energy per
symbol. Under hypothesis f;, which occurs with a priori probability 7, the constellation is the
set B = {b1,bs, ... bas, }, which satisfies Mil S M |bs|? = E.. The binary modulation classification
problem is a hypothesis testing problem in which the receiver must decide which constellation is
in use at the transmitter. We assume throughout that w,, 0., T, p(t), E, and N, are known to
the receiver, so that effectively the only unknowns are the data sequence and the hypothesis. We
further assume, without loss of generality, 0 < my, m; < 1 to avoid trivial cases.

The optimal classifier structure for this model is known to consist of a matched filter followed
by a threshold device[21]. Denote the received sequence as r € C", where r is a vector of the signal
samples at the output of the receiver matched filter and C" denotes an n-tuple of complex values,
and the decision function as Dy, : C" — {0, 1}, which indicates a decision for hypothesis H, or

H,. Using a maximum a posteriori (MAP) criterion, an optimum decision function is[21]

0 if Ly,(r) >0
Dy, (1) = ( , 3)
1 if LNO(f) <0

! This formulation admits the use of windowed bandwidth efficient pulse shaping such as Nyquist pulse-shaping



where

M, _

( Zj:01 eXP(N_(l) ||ﬁ_ﬂ||2) )
g —
T exp(52 lr—bell”)

Ly (r) = 5 log(Z2) +log(q) + + 327, log )

is the log-likelihood ratio.
In the case of phase-shift keying modulation, the constellation points are given by a,,, = \/E,e/%"

where 0,, is an element of the set

27

{kyp k=0 M —1}, (5)

where M is the number of points in the constellation. Note that, under this definition, the con-
stellations under different hypotheses have a nonempty intersection. For classification between
BPSK and QPSK with a priori probabilities 7 and 7, an optimal test statistic using a maximum

a posteriori (MAP) criterion is given by

1

n

No

L3P =
0 cosh( %;E_xz)

<cosh(2‘/E_Sxi) + cosh(%yi)

o 1 1 >
log—= +log =+ =) 1 6
ong+og2+n;0g ; (6)

where x; and y; are the real and imaginary components, respectively, of the received signal sample
r;. For a test between BPSK and 8PSK, with a priori probabilities 7z and g, respectively, an

optimal MAP test statistic is given by

8B __ 1 - 1
LNO _Elogw_;;—FlOgZ—k o
1 Zn lo <Cosh(2%f_smi)+cosh( 2_\1<7f_syi)+COSh(2\16?(Ii+yi))+COSh(2\16§_S(Ii—yi)>
n 22i=1108 cosh(%f_smi) )

For the test between QPSK and 8PSK with a priori probabilities g and g, an optimal test statistic

is given by

LY = o log 25 +log 5 + ®)

LY log (< e A
n i=1 cosh(24Es 1)+ cosh (2Es Yi
No No

2‘/E_Smi +cosh 2\/E_Syi +cosh 2VEs z;4Yyi))+cosh 2VEs Ti—Y;
N, >



III. NOISELESS BOUND

Consider the binary modulation classification problem in the noiseless case (i.e., Ny = 0),
which is a hypothesis test on a discrete probability space, since the received symbols are exactly
the transmitted symbols. Under hypothesis H, which occurs with a priori probability 7, the
constellation is the set of complex points A = {ay, ay, . . . ap, }, While under hypothesis H;, with
a priori probability 7y, the constellation is the set B = {by, ba, ... bas, }. Let M, = [{A N B}| be
the size of the intersection between the two constellations. Let S, = {A N B}"™ denote the set of
n-tuples from the intersection. These are called “ambiguous sequences” because they are possible
under both hypotheses, and are the sequences that can lead to errors in the noiseless case. Define
So as the set of n-tuples containing at least one point from A \ B, i.e. a point in A that is not in B.
If the observation is in this set, a maximum a posteriori (MAP) classifier will correctly choose H,
because it is impossible that such a sequence could have been observed under H;. Let S; be the set
of n-tuples containing at least one point from B \ A. If the observation is in this set, the noiseless
case classifier will correctly choose ;.

An optimal test is again given by (3), using the likelihood function given by

Lo(r) = Llog(22) + log(8%) + L 30, log( St 022) ©)
olr) = 5 log( 1) +1og( ) + 5 2.y 108 S S (b))
where 6(r) = 1 if r = 0 and zero otherwise. Then, the probability of error is given by

M,

n Ma n
ﬁo) (2 } (10)

P.(n) = min{wo( A
Thus, for a fixed number of samples, the noiseless case error probability is bounded from below by
a nonzero error floor, if the intersection between the constellations is nonempty. For large enough
n, the error probability is decreasing exponentially with n, except in the trivial case M, = M, =
M. The noiseless error probability expression in (10) is a bound in the sense that it is the limiting

error probability of the noisy case test given by (3) and (4) as the SNR goes to infinity. That is, for

modulation classification in noise,

Ma n n
Jim, P (n) = min{mo( 57", m ()" | (11)
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The rigorous mathematical proof of this fact is nontrivial but too long to be included in this paper,
owing to length restrictions. A rigorous proof of this is given in reference [23].

Consider the binary modulation classification problems between BPSK and QPSK, BPSK and
8PSK, and QPSK and 8PSK, in the noiseless case. Assume that the phases are given by (5), so that
the signals possible under the hypothesis associated with the smaller constellation are also possible
under the other hypothesis. For the binary test between H, (BPSK) and H; (QPSK) with a priori
probabilities my and m; = 1 — o, respectively, using (10), the error probability in the limit as the

SNR goes to infinity is given by
P.(n) = min{my, ™ 27"} . (12)

For the test between H; (QPSK) with a priori probability 7 and Hs (8PSK) with a priori proba-

bility mo = 1 — 7y, the error probability in the limit is given by
P.(n) = min{m,m 27"} . (13)

Finally, for the test between H, (BPSK) with a priori probability 7y and H, (8PSK) with a priori

probability my = 1 — 7, the error probability in the limit is given by
P.(n) = min{my, m 47"} . (14)

We note that the error probability expressions in [2] are derived through a central limit theorem
argument. Simulation results are used to show that these expressions are accurate for small values
of SNR and small-to-moderate numbers of samples. While [2] did not propose using the analytical
expressions for large values of SNR, we note that the expressions indicate that the error proba-
bility tends to zero for large SNR where the noiseless bound is significant and the probability of

misclassification does not go to zero for large SNR.

IV. ERROR EXPONENT BOUNDS

In this section, we calculate the CI, BD and KLDs for the modulation classification problems of

BPSK vs. QPSK, BPSK vs. 8PSK and QPSK vs. 8PSK. We first state the definitions and bounds



related to these quantities.

A. Chernoff Bound

Assume that under both hypotheses H, and H;, a density for the received signal exists, and
the single sample densities are given by po(r) and p;(r), respectively. The alpha entropy between

po(r) and py (1) is defined as

Eu(po, p1) = / pe(r) P (r) dr (15)

For iid observations, an upper bound on the Bayesian probability of error for any a € [0, 1] is given
by[10]

Py(e) < n§mi*(Ea(po, p1))"™ (16)

The Chernoff entropy is defined as

E*(po,p1) = OglgilEa(Poypl) ; (17)

and o is defined as the minimizing value of a.. The CI is defined as

C(po,p1) = —logo E*(po, p1) - (18)

The best achievable asymptotic error exponent among all tests is given by[10]

.1 N
lim —log, P, (e) = logy E* (po, p1) - (19)

n—oo n,

The CI also determines a bound on the probability of error for a finite number of samples. From

(17) and (18), the least upper bound of the form given in (16) is given by

P,(e) < " mime 27 nCwor), (20)



B. Bhattacharyya Bounds

The Bhattacharyya bound is of the form (16) with o = % For iid observations, the Bhattacharyya

bound on the Bayesian probability of error is given by[8]

P,(e) < \/7ﬁ2—n13(po,p1)7 20

where B(pg, p1) is the BD, defined as

B(po, p1) = —logg{ / po(r)pa(r) df} : (22)
An asymptotic version of (21) is given by

. 1
lim —glog2Pn(e) > B(po,p1) - (23)

The expression in (23) is a lower bound on the CIL
For finite n and iid observations, a lower bound on the Bayesian probability of error is given
by[8]
P.(e) > Tom 2 2B wor1) (24)

which admits an asymptotic version as

1
lim ——log, P, (e) < 2B(po,p1), (25)
n

n—oo

which defines an upper bound on the CI.

While the Bhattacharyya bounds are not as tight as the Chernoff bounds, the Bhattacharyya
bounds are easier to calculate because the CI calculation involves the optimization problem im-
plied by (17). For both small and large values of the SNR, the BD can be used to construct a good
estimate of the CI. For small values of the SNR, the distributions under both hypotheses approach
the same noise-only distribution, the alpha entropy in (15) tends to 1 for any «, and both the CI
and BD approach zero. For large values of the SNR, the CI for the PSK modulation classification
problems will approach twice the BD. Consider again the noiseless case. Under H, the proba-

bility distribution is uniform on the set of the )/, possible symbols under H,, while under /7; the
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probability distribution is uniform on the set of the M, possible symbols under H;. Let M, be the
cardinality of the intersection of the signal constellations. From (22), the BD in this case is given
by

1
By = —1 (Ma 7) 2
0 0go Mo M, (26)

and the alpha entropy, using (15), is given by

M, s M\«
E, — —(—) . 27
o, 0, 27
Minimizing this over « gives a CI of
M,
Co = —loga( 7). 28
0 082 M, (28)

Suppose M, = M,, so that all of the constellation points under [ are also possible under /. This
is the case for the BPSK vs. QPSK, QPSK vs. 8PSK and BPSK vs. 8PSK modulation classification

problems. Then,

My \* M,
( MOMl) M 29
M, M,
—log, (=2) = —2log, (————x
= —loga(37) & ) (30)
= Cy =2B,. (1)

Thus, for large values of the SNR, the approximation of the CI by twice the BD will be a reasonable
approximation for the PSK modulation classification problems under consideration.

Note that the Chernoff bound (20), Bhattacharyya upper bound (21) and Bhattacharyya lower
bound (24) are all exponential bounds on the probability of error. Thus the bounds will appear
linear on a log scale for a plot of the probability of error against the number of observations, with
slopes given by the negatives of the error exponents C'(pg, p1), B(po, p1) and 2B(pg, p1). The CI
has the additional property that it is the negative of the limiting slope on the tail of the probability
of error as a function of the number of observations, which makes it a more useful performance

measure than the BD.
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C. Kullback-Liebler Bounds

The performance of a binary hypothesis test is characterized by the type I and type II error
probabilities, given by a,, = P, (e|Hy) and 3, = P, (e|H;). Under the Neyman-Pearson criterion,
[, is minimized under the constraint that «,, < € for some fixed probability e. For iid observations,

Stein’s lemmal14] states that

1
lim lim —log2{ min ﬁn} = —KL(pol|p1) , (32)

e—0n—oco N D:an<e

where the minimization is over all decision functions D with type I error probability less than e,

and K L(po||p1) is the KLD, given by

_ o po(r)
K L(pollpy) = / polr)lom( 22

)dr . (33)
The distance K L(py||p1) is an upper bound on the (base 2) asymptotic error exponent for the
type I error probability if the type I error probability is allowed to remain constant as the number

of samples goes to infinity. The type I error exponent is similarly bounded by K L(p:||pg), which

is not equal to K L(pp||p1) in general.

D. Calculations for PSK Modulation Classification

Numerical integration was used to calculate the CI, BD and KLDs associated with classifiers for
the following phase-shift keying modulations: BPSK, QPSK and 8PSK.

The CI values for the three binary tests (BPSK vs. QPSK, BPSK vs. 8PSK and QPSK vs. 8PSK)
are plotted as functions of the SNR in Fig. 1. It is seen that the CI for the BPSK vs. 8PSK test
is uniformly higher than the CI for the BPSK vs. QPSK and QPSK vs. 8PSK tests, while the CI
for the QPSK vs. 8PSK test is uniformly lower than the CI for the BPSK vs. QPSK and BPSK vs.
8PSK tests. The CI for the BPSK vs. QPSK test is very close to the CI for the BPSK vs. 8PSK test
for small values of the SNR, while it is very close to the CI of the QPSK vs. 8PSK test for large
values of the SNR. In Section III, the error probability expressions in the noiseless case for the three

pairs of PSK modulation classification problems were given in (12), (13) and (14). Assuming the
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a priori probabilities are nonzero, for large enough 7, the probability of error for for both the BPSK
vs. QPSK and QPSK vs. 8PSK tests are proportional to 27", corresponding to an error exponent
of one (using base 2). This is in agreement with Fig. 1, where it can be seen that the CI curves for
BPSK vs. QPSK and QPSK vs. 8PSK are both asymptotic to one bit, i.e. for large values of the
SNR we indeed approach the noiseless bound. For the BPSK vs. 8PSK test with nonzero a priori
probabilities and sufficiently large n, the noiseless case error probability is proportional to 47",
corresponding to an error exponent of 2 (using base 2). This is verified by Fig. 1, in which the
CI for this test approaches 2 bits as the SNR gets large. For an M-ary hypothesis test, the pair of
hypotheses with the lowest CI will determine the asymptotic performance[16]. From Fig. 1, it is
seen that the CI curve for the QPSK vs. 8PSK test is uniformly lower than the curves for the other
two pairs. Thus, the logarithmic rate to zero of the misclassification probability for the 3-ary test
among BPSK, QPSK and 8PSK is determined asymptotically by the misclassification probability
in deciding between QPSK and 8PSK.

The CI, BD and KLDs for the modulation classification problems BPSK vs. QPSK, BPSK vs.
8PSK and QPSK vs. 8PSK are shown in Figs. 2, 3, and 4, respectively. The CI is shown in all
figures to be bounded from below by the BD and bounded from above by twice the BD. The CI
is close to the BD for small values of the SNR (indicating that o™ ~ % in this range), and close to
twice the BD for large values of the SNR. Interestingly, the Cl is very close to the BD for SNRs of 5
dB or less for the BPSK vs. QPSK and BPSK vs. 8PSK tests, and for SNRs of 10 dB or less for the
QPSK vs. 8PSK test. It is shown that the KLDs K L(BPSK||QPSK) and KL(QPSK||8PSK)
approach the value of one bit for large values of the SNR, while the KLD K L(BPSK||8PSK)
approaches the value of 2 bits for large values of the SNR.

In the following discussion, let [, be the hypothesis associated with the smaller constellation,
and H be the hypothesis associated with the larger constellation. From (32), these quantities are
associated with the logarithmic rate to zero of the error probability given that hypothesis ; is true.

This reflects the fact that, for large SNR, under hypothesis /, the probability of a transmitted se-
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quence which is possible under hypothesis / is on the order of 27" for the BPSK vs. QPSK and
QPSK vs. 8PSK tests, and 47" for the BPSK vs. 8PSK test. These “ambiguous sequences” cause
errors for sufficiently large SNR, when the probability of error given hypothesis H is constrained
to be less than ¢, for e sufficiently small. The KLDs K L(QPSK||BPSK), KL(8PSK||QPSK)
and K L(8PSK||BPSK) increase without bound as the SNR increases. These quantities are as-
sociated with the logarithmic rate to zero of the error probability given H,. This result is reflecting

the fact that, in the noiseless case, for large enough 7, no error is made under hypothesis Hj.

V. SIMULATION STUDY

Simulations were run to demonstrate the performance of PSK classifiers as a function of the
number of observations. In all cases, a sufficient number of simulation trials was employed to
yield graphical accuracy. The required number of trials is over one hundred times the inverse of
the error probability. Classifiers were simulated for the BPSK vs. QPSK, QPSK vs. 8PSK and
BPSK vs. 8PSK problems. The results are then interpreted to ascertain the practical implications
of the CI, BD and KLDs for these problems. Bayes tests, with assumed equal a priori probabilities,
are shown for all pairs of distributions from the set BPSK, QPSK and 8PSK. Neyman-Pearson tests
are shown for the BPSK vs. QPSK classifier.

The noiseless bound is evident in Fig. 5, which shows the probability of misclassification as
a function of ]E\?f_o after one sample has been observed and after ten samples have been observed,
for PSK classifiers using a Bayes criterion. The figure shows that the error probability for each
classifier is subject to a nonzero error floor which is approached for large values of the SNR. For
the same value of the SNR, the QPSK vs. 8PSK classifier has a higher misclassification probability
than the BPSK vs. QPSK classifier, due to the fact that the constellation points are much closer
together in the former test than in the latter, although the error probabilities approach the same
error floor for large values of the SNR.

The performances of the Bayes classifiers and the associated Chernoff bound (20), Bhattacharyya

upper bound (21) and Bhattacharyya lower bound (24) are shown in Fig. 6, as functions of the
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number of observations, for an SNR of 0 dB. From Fig. 1, at 0 dB, the CI values for the BPSK vs.
QPSK, BPSK vs. 8PSK and QPSK vs. 8PSK tests are .075, .074 and .0023 bits, respectively. The
absolute values of the slopes of least squares fit lines to the tails of the data (the last 50 samples
shown) for the BPSK vs. QPSK and BPSK vs. 8PSK classifiers are .079 and .076 bits respec-
tively, while that for the QPSK vs. 8PSK test is .0027 bits, using data for the 50 samples prior to
the 1000t/ observation. These experimental values are close to the CI values, demonstrating the
practicality of the CI for these classification problems at 0 dB. The values are larger than the CI
because the slope of the line approaches the negative of the CI asymptotically in the number of
samples, and these calculations are for relatively low numbers of samples. From Figs. 2, 3 and 4 it
can be seen that, for each classifier at 0 dB, the Cl is very close to the BD, and indeed, from Fig. 6,
the Bhattacharyya upper bounds (21) are close to the Chernoff bounds (20) for all three classifiers.
This verifies our earlier statement that, for small values of the SNR, the Bhattacharyya bound is a
good approximation to the Chernoff bound. The Bhattacharyya lower bounds are seen to be not
very tight at 0 dB, particularly for the BPSK vs. QPSK and BPSK vs. 8PSK classifiers. It can be
seen from Figs. 2, 3, and 4 that twice the BD (which determines the lower bound (24)) is higher
than the CI at small values of the SNR, where the Bhattacharyya lower bound is not a particularly
useful bound.

In Fig. 7, the performances of the Bayes classifiers and the associated Chernoff and Bhat-
tacharyya upper bounds are shown, as functions of the number of observations, for an SNR of
15 dB. At this SNR, the difference in the performance between the BPSK vs. QPSK and BPSK vs.
8PSK classifiers is more evident than at 0 dB. From Fig. 1, at 15 dB, the CI values are .90, 1.5,
and .68 bits for the BPSK vs. QPSK, BPSK vs. 8PSK and QPSK vs. 8PSK tests, respectively. A
least squares line was fit to the last 10 data points for each of the classifier performance curves in
Fig. 7. The absolute values of the slopes of the lines were 1.0, 1.6 and .69 bits, for the BPSK vs.
QPSK, BPSK vs. 8PSK and QPSK vs. 8PSK classifiers, respectively. As for the 0 dB simulation,

we note that for 15 dB, these values are higher than, but close to the CI values, verifying our claim
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that the CI is a practical performance metric for these tests, although only 10 samples were used
for the line. The Bhattacharyya distances at an SNR of 15 dB, from Figs. 2, 3 and 4, are .50, .99
and .49 bits for the BPSK vs. QPSK, BPSK vs. 8PSK and QPSK vs. 8PSK classifiers respectively.
Neither the set of Bhattacharyya distances (which determine the upper bounds (21)) nor the set
of twice the Bhattacharyya distances (which determine the lower bounds) are as good a match
with the simulated least squares slopes as the set of Cls for all three classifiers, although twice the
Bhattacharyya distance is close for the BPSK vs. QPSK test. This is because the curve has not yet
become linear in the simulated range; with increasing numbers of samples the value will approach
the CI. This is reflected in Figs. 7and 8, where the slopes of the Chernoff bounds are much closer
to the simulated data that those of the Bhattacharyya bounds, considered across all three tests. The
Bhattacharyya lower bounds for the modulation classification problems at 15 dB are shown in Fig.
8. From Figs. 6 and 7, it is seen that the Bhattacharyya lower bounds are significantly tighter for
15 dB than for 0 dB. This is expected as, from Figs. 2, 3 and 4, twice the BD is close to the CI
at 15 dB for all three tests. At high SNR the Bhattacharyya lower bound approaches the Chernoff
bound. The small discrepancy between the CI and twice the BD means that the Chernoff bound
and the Bhattacharyya lower bound will have similar slopes when plotted on a log scale.

The performance of a BPSK vs. QPSK modulation classifier designed under a Neyman-Pearson
criterion is shown in Figs. 9 and 10, at an SNR of 0 dB. Defining hypothesis H, as the BPSK
hypothesis and hypothesis f7; as the QPSK hypothesis, the criterion in Fig. 9 was to minimize the
type II error probability 3, = P(e|H,) subject to the constraint that the type I error probability
a, = P(e|Hy) < e, for fixed error probabilities ¢ = .05,.01 and .001. In Fig. 10, the type I
error probability «,, is minimized subject to the type II error probability constraint 3, < ¢, for
the same values of €. For a sequence of decreasing error probability constraints, we expect to see
that the associated sequence of limiting slopes for the type II error probability curves is decreasing
monotonically in magnitude to the KLD KL(BPSK|QPSK), from (32). For Figs. 9 and 10, The

magnitudes of the slopes at the tails of the plot of the non-constant error probability curves were
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calculated. For Fig. 9, For the sequence of constraints o« < .05, & < .01 and o < .001, the absolute
values of the slopes at the tails shown are given by .20, .19 and .16 bits, respectively. While, as
expected, the magnitude of the slope decreases with decreasing e, the sequence of simulated slopes
does not seem to be approaching the KL distance KL(BPSK|QPSK) of .25 bits. This is because the
absolute values of the slopes given above are clearly not the limiting values for the curves shown
in Fig. 9. For the probability of error range shown, the curves are not particularly linear, and it
is expected that the magnitude of the slope at the tail of these curves will be higher than those
calculated for the small number of observations shown. Insufficient numbers of samples have been
observed for a measurement of the limiting slope on the probability of error curves. In Fig. 10,
as € decreases, the magnitude of the limiting slope should tend to the KLD KL(QPSK|BPSK),
which, from Fig. 2, is .37 bits at 0 dB. The magnitudes of the slopes at the tails of the plot of the
type I error probability curves were calculated as .29, .23 and .20 bits, for the constraints 5 < .05,
B, < .01 and 5, < .001, respectively. As before, for the probability of error range shown, the
curves are not linear and the limiting slopes will be higher in magnitude. For SNR of 0 dB, it does
not appear that the Kullback-Liebler bounds are effective in performance determination for these

problems.

VI. CONCLUSIONS

Consideration of modulation classification in a noiseless setting has provided a bound for the
error probability in classifying two-dimensional constellations under noisy conditions. This bound
shows that for a finite number of samples, the error probability is bounded from below by a nonzero
error floor as the SNR goes to infinity, assuming that the constellations under different hypothe-
ses have a nonempty intersection. The CI, BD and KLDs were calculated for phase-shift keying
modulation classification problems. Modulation classifiers derived under both Bayes and Neyman-
Pearson criteria were simulated. The results showed that, for Bayes tests, the CI was a more

suitable performance measure than the BD. The CI provides a tighter upper bound on the error
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probability than the BD, and it yields estimates of the logarithmic rate to zero of the error probabil-

ity curve, which were shown to be close even for relatively small numbers of observations, at both

small and large values of the SNR. The BD provides useful upper and lower bounds on the error

probability, is easier to calculate than the CI, and can be used to construct a good estimate of the

CI at both small and large values of the SNR. The KLD provides a lower bound to the achievable

logarithmic rate to zero of the type II error probability given a fixed constraint on the type I error

probability, in the limit as the constraint goes to zero. For the classification problems studied, the

error probability curves did not become linear fast enough to enable a determination of the limiting

slope and meaningful comparison with the KL.D.
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Fig. 10. The probability of misclassification vs. number of samples for BPSK vs. QPSK Neyman-Pearson tests, with fixed error

probability constraints on the type II error probability, P(e|QPSK).



